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Supplementary figure 1: Immune cell composition in naive and post-
influenza mice.

a, Absolute number of total B-cells, and B-cell subsets in the lungs of naive and
influenza experienced (IAV d28) mice, as quantified by flow cytometry. B-cells
(n=8 mice PBS/n=9 mice X31), Plasma cells n=3 mice b, H&E staining of paraffin-
embedded lung tissue sections from PBS-control and [AV d28 mice. c,
B220/DAPI staining of a bronchial proximal follicle in a paraffin-embedded lung,
28 days post-influenza. Arrows indicate the presence of iBALT. d, Absolute
number of innate and adaptive immune cell subsets in the whole lung of naive
and influenza experienced (IAV d28) mice, as quantified by flow cytometry. CD4
T-cells (n=11 mice) Other cells (n=12 mice PBS/n=15 mice X31) from 3
independent experiments. Data shown as arithmetic means +SD and statistical
significance assessed using a two-tailed Mann Whitney U test. * p=<0.05, **
p=<0.01.
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Supplementary figure 2: Characterisation of AM in naive and post-influenza
mice.

a, Alveolar macrophages (CD64* MerTK* Siglec F* CD11b-) and interstitial
macrophages (CD64* MerTK* Siglec F- CD11b*) were quantified by flow
cytometry in naive and influenza-experienced lungs. b, Quantification of alveolar
macrophages by flow cytometry in the lung at indicated time points following
influenza infection. n=6 mice PBS/n=9 mice X31 from one experiment c,
Imagestream of alveolar macrophages and Ly6Ch monocytes from naive and
post-influenza lungs representative of 2 independent experiments. d, A partial
least squares discriminant analysis (PLS-DA) of Ly6Ch monocytes and
macrophages from naive and post-influenza lungs. e, Phagocytosis of live S.
pneumoniae by alveolar macrophages. Bacteria were labelled with
Carboxyfluorescein succinimidyl ester (CFSE) and incubated with AMs from
naive (n=2 mice) and post-influenza (n=3 mice) lungs. Intracellular CFSE levels
were quantified by flow cytometry. One representative experiment of two
independent experiments is shown n.s. = 0.8 f, Reactive oxygen species (ROS)
production by naive (n=2 mice) and post-influenza (n=3 mice) alveolar
macrophages. Chemiluminescence is detected by horseradish peroxidase
reacting with cell-permeable luminol to detect both intracellular and
extracellular ROS. Data shown as arithmetic means +SD and statistical
significance assessed by a two-tailed Mann Whitney Test.
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Supplementary Figure 3: Increased production of selective cytokines by
post-influenza AMs.

a-d, Cytokine quantification by 36plex multiplex following a 16hr stimulation of
AMs isolated from the lungs of naive and influenza-experienced mice, stimulated
ex vivo with 100ng/ml Pam3CSK4 or LPS. n= 9 mice (Pam3CSK4 PBS) n=8 mice
(Pam3CSK4 IAV d28) n=7 mice (LPS PBS) n=8 mice (LPS IAV d28) from 2-3
independent experiments. e, Cytokine quantification of IL-6 and TNF by ELISA,
from AMs isolated from the lungs of naive and influenza-experienced mice,
stimulated ex vivo with a range of Pam3CSK4 concentrations for 16 hours. f,g,
Protein quantification of IL-6 and TNF by ELISA after ex vivo stimulation with
100ng/ml LPS (f) or Pam3CSK4 (f,g) for 16 hours, (f) from AMs isolated from
BAL of naive (n=2 mice) and influenza-experienced (n=3 mice) mice, or (g) from
magnetically sorted SiglecF positive and negative cell fractions from the lungs of
the indicated mice. (n=6 mice PBS/n=>5 mice IAV d28) from one experiment. h,
Expression of surface markers on alveolar macrophages quantified by flow
cytometry n= 12 mice (PBS)/n=13 mice (X31) or (MARCO) n=6 mice (PBS)/n=5
mice (IAV d28) from 1-3 independent experiments. Net fluorescence indicates
the subtraction of an FMO gMFI from the gMFI of the fluorophore. Data shown as
arithmetic means +SD and statistical significance assessed by two tailed Mann
Whitney Test. * p=<0.05, ** p=<0.01, *** p=<0.001, **** p=<0.0001.
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Supplementary Figure 4: Characterisation of Busulfan bone-marrow
chimeras.

a, Schematic of Busulfan chimera experiments. b,c, Chimerism and absolute
number of (b) neutrophils and (c¢) Ly6Ch monocytes in the lungs of naive (n=5
B6 donor/n=4 Ccr2/-donor) and post-influenza (n=5 mice) Busulfan chimeras.
From 2 independent experiments. d, Frequencies of myeloid progenitors in the
bone marrow of naive and influenza experienced (IAV d28) mice, identified as
described in Methods. n=6 mice, pooled from 2 independent experiments. e,
Naive and IAV (d28) alveolar macrophages were isolated from the lungs of
chimeric mice and mock stimulated ex vivo to provide gating controls for Fig 4e.
ICCS for IL6 (top panels) and TNF (bottom panels) n=4 mice f, C57BL/6 mice
were treated with PBS (n=5), influenza (n=5 mice), PBS-liposomes (n=6 mice) or
clodronate-liposomes (n=6 mice) as indicated. 28 days later, AMs were purified
and stimulated in vitro with Pam3CSK4 for 16 hours. Cytokines were measured
by ELISA. Pooled from 2 experiments. Data shown as arithmetic means +SD and
statistical significance assessed by two-tailed Mann Whitney Test. * p=<0.05, **
p=<0.01.
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Supplementary Figure 5: Transcriptome analysis of resident and recruited
AMs from Busulfan chimeras at 1 month post-influenza.

a, Heat map of differentially expressed genes (FC>2, 2-way ANOVA with
Benjamini-Hochberg correction, p<0.01). Variables are stimulation (Mock,
Pam3CSK4) and origin (CD45.2 PBS, CD45.2 Flu: resident AMs from Busulfan
chimeras and therefore of a Ccr2-/-genotype; and C57BL/6 WT PBS: resident
AMs from naive C57BL/6 mice and therefore of a CCR2wt genotype).
Unsupervised clustering for treatment groups shows great similarity of Ccr2-/-
and WT resident AMs. b,c, Venn diagram showing the pairwise comparisons
between mock-stimulated samples at 1 month (b) or 2 months (c) post-
influenza. d, Heatmap for significant differences in Canonical pathways for the 6
pairwise comparisons shown in (b) and (c). Gene expression was compared
using IPA Comparison Analysis. e,f, GSEA using published gene sets derived from
Gautier et al.2?, Gibbings et al.17, Lavin et al.3%, Schneider et al.3! depicting gene
sets which are enriched in resident AMs (e) or in recruited AMs (f) at 28 days
post influenza. g,h, Top 5 pathways (FDR g-val <0.01) found by GSEA to be
enriched in recruited (g) or resident (h) alveolar macrophages (NES =
Normalized Enrichment Score). Included are representative GSEA plots from and
the top 10 highest ranked genes from the indicated gene set.
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Supplementary Figure 6: Transcriptome analysis of resident and recruited
AMs from Busulfan chimeras at 2 months post-influenza.

a,d, Heatmap of differentially expressed genes at 1 month (a) or 2 months (d)
post infection (FC>1.5, 2-way ANOVA with Benjamini-Hochberg correction,
p<0.01). Variables are stimulation (Mock, Pam3CSK4) and origin (CD45.2 (Ccr2/-
/-) PBS resident, CD45.2 (Ccr27/-) Flu resident, CD45.1 Flu recruited). b, The p-
values and FDR g-values of the Top 5 GO Biological processes enriched in genes
annotated by GREAT to each cluster in Fig. 6e. ¢, Schematic of infection and
Busulfan treatment to identify influx of BM-derived monocytes after influenza
resolution. Chimerism was identified by CD45.1 positive cells in Ly6Chi
monocytes and alveolar macrophages in the lung at 10 and 20 days post-
reconstitution. e, Genes from unstimulated cells at one and two months post
influenza as shown in Fig. 7g were grouped into the three clusters indicated.
Genes were then classified by their changes between clusters into the six classes
indicated. Two of these classes (increasing expression over time of lung
residence, cluster1<2<3; and decreasing expression over time of lung residence,
cluster3<2<1) were further analysed. f, GSEA for the two classes defined in (e).
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Supplementary
Figure 7



Supplementary Figure 7: Comparison between resident and recruited AMs
to human and mouse lung macrophage gene sets in lung cancer.

GSEA using a ranked gene list of recruited versus resident AMs at one or two
month post influenza, (a) human and (b) mouse gene sets from lung
macrophages, monocytes and dendritic cells obtained from Zilionis et al.34. c,
Heatmap showing the NES of GSEA performed using mouse datasets obtained
from Zilionis et al.34.
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Supplementary figure 8: Myeloid gating strategy for whole lung
Gating strategy, exemplified in an influenza (d28) lung



Supplementary Figure 8: Flow-based identification of myeloid cells in the
lung.
Gating strategy for myeloid cells in the lung, exemplified in an IAV (d28) lung.
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